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Abstract. The genuine twist-3 quark–gluon (q̄Gq) contributions to the generalized parton distributions
(GPDs) are estimated in the model of the instanton vacuum. These twist-3 effects are found to be
parametrically suppressed relative to the “kinematical” twist-3 ones due to the small packing fraction of
the instanton vacuum. We derived exact sum rules for the twist-3 GPDs.

1 Twist-3 DVCS amplitude

Deeply virtual Compton scattering (DVCS) [1,2] has been
a subject of rather intensive investigations during the last
few years (for a detailed recent review of DVCS see [3]). It
is a two-photon process:

γ∗(q) +N(P )→ γ′(q′) +N ′(P ′) , (1)

in which the initial virtual photon γ∗, being produced by
a lepton, interacts with a parton of the initial nucleon N ,
the final real photon γ′ is radiated by the parton, and
the nucleon N ′ in the final state is formed by the active
parton and the rest of the initial nucleonN . The reaction is
considered in the Bjorken limit, when the virtuality of the
initial photonQ2 = −q2 � P 2 is large, theBjorkenvariable
xBj = Q2/2(P · q) is fixed and the momentum transfer
squared is small: (P ′ − P )2 � Q2. The first experimental
results on DVCS can be found in [4–7].

We will work in the infinite momentum frame defined
by the light-cone vectors nµ = 1/(P̄+

√
2)(1, 0, 0,−1) and

pµ = P̄+/
√

2(1, 0, 0, 1), with P̄µ = (P + P ′)µ/2 being the
average hadron momentum (note that n2 = p2 = 0 and
n · p = n · P̄ = 1). Let us define the momentum transfer
as ∆µ = (P ′ − P )µ and its square as t = (P ′ − P )2. In
this paper we shall use a kinematical variable ξ, analogous
to the Bjorken one, defined as ξ = −(n · ∆)/2. A more
detailed description of the DVCS kinematics can be found,
e.g., in [3].

To leading order in the electromagnetic coupling
constant, the amplitude of DVCS is proportional to the
hadronic tensor Hµν ,

Hµν = −i
∫

d4x e−iqx 〈P ′|TJµ(x)Jν(0)|P 〉 . (2)

To order (1/Q)0, it can be expressed through the non-
diagonal hadron matrix elements Fα and F̃α of gauge-

invariant light-cone bilocal operators:

Hµν =
1
2
(−g⊥

µν

) ∫ 1

−1
dxC+(x, ξ) nαFα(x, ξ, t) (3)

− i
2
ε⊥

µν

∫ 1

−1
dxC−(x, ξ) nαF̃α(x, ξ, t) +O

(
1
Q

)
,

where Fα and F̃α are defined as

Fα(x, ξ, t) (4)

=

+∞∫
−∞

dλ
2π

e−iλx

〈
P ′, S′

∣∣∣∣ψ̄(λ2 n
)
γαψ

(
−λ

2
n

)∣∣∣∣P, S〉 ,

F̃α(x, ξ, t) (5)

=

+∞∫
−∞

dλ
2π

e−iλx

〈
P ′, S′

∣∣∣∣ψ̄(λ2 n
)
γαγ5ψ

(
−λ

2
n

)∣∣∣∣P, S〉

(let us note, that here we do not write explicitly the phase
factors which make the bilocal operators gauge-invariant).
The coefficient functions C±(x, ξ) are

C±(x, ξ) =
1

x− ξ + iε
± 1
x+ ξ − iε

, (6)

and the transverse tensors −g⊥
µν and ε⊥

µν are

−g⊥
µν = −gµν +nµpν +nνpµ , ε⊥

µν = εµνλσn
λpσ . (7)

In general, the functionsFα and F̃α contain both the purely
quark and mixed quark–gluon contributions. However, in
the considered case, the quark–gluon contribution vanishes
due to contraction with the light-cone vector nα. Therefore
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the scalar products nαFα and nαF̃α can be parameter-
ized in terms of four functions Hq(x, ξ, t), Eq(x, ξ, t) and
H̃q(x, ξ, t), Ẽq(x, ξ, t) in the following way [2]:

nαFα = Hq(x, ξ, t) N̄(P ′, S′)n̂N(P, S)

+Eq(x, ξ, t) N̄(P ′, S′)
iσµνnµ∆ν

2M
N(P, S) , (8)

nαF̃α = H̃q(x, ξ, t) N̄(P ′, S′)n̂γ5N(P, S)

+Ẽq(x, ξ, t) N̄(P ′, S′)
γ5∆ · n

2M
N(P, S) . (9)

HereN(P, S) is the Dirac bispinor of a hadron (a proton in
our case), M is the hadron mass, and we use the notation
x̂ = xµγµ throughout the paper. The functions H, E and
H̃, Ẽ are the generalized parton distributions (GPD) (for
a review, see [8–10]). In the forward limit P ′ = P the
distributions Hq and H̃q coincide with the usual parton
densities q(x) and ∆q(x). The distributions Eq and Ẽq

are completely new ones. Thus the investigation of DVCS
allows us to get additional information about the structure
of hadrons. In particular, the GPDs contain information
about the hadron spin distribution among the partons of
the hadron [2, 11].

The amplitude of DVCS has corrections of two types:
firstly, loop corrections in powers of the electromagnetic
and strong coupling constants and, secondly, higher-twist
corrections in powers of 1/Q. We will not consider the loop
corrections in this paper. Making allowance for the first
correction in powers of 1/Q, the hadronic tensorHµν takes
the following form [12,13] (for the pion target see [14,15]):

Hµν

=
1
2

[(−g⊥
µν

)− ∆⊥
µ P̄ν(
P̄ · q′)

]

×
∫ 1

−1
dxC+(x, ξ) nαFα(x, ξ, t)

+
i
2
ε⊥λ

µ

[(−g⊥
λν

)− ∆⊥
λ P̄ν(
P̄ · q′)

]

×
∫ 1

−1
dxC−(x, ξ) nαF̃α(x, ξ, t)

− (q + 4ξP̄ )µ

2
(
P̄ · q′)

[(−g⊥
λν

)− ∆⊥
λ P̄ν(
P̄ · q′)

]

×
∫ 1

−1
dx

{
Fλ

⊥(x, ξ, t) C+(x, ξ)

− iελσ
⊥ F̃⊥

σ (x, ξ, t) C−(x, ξ)
}

+O
(

1
Q2

)
. (10)

Note that Hµν satisfies the transversity conditions

qµHµν = 0, Hµν(q′)ν = 0. (11)

We see that the correction contains a term proportional to
the transverse part of the vector functionsFα and F̃α. This
means that, in comparison to the leading order, to order
1/Q we deal with corrections of two types: those, called
“kinematical”, associated with purely quark operators and
“genuine twist-3” ones originating from the quark–gluon
operators, which have the form ψ̄Gψ, where ψ is the oper-
ator of the quark field and G denotes the operator of the
gluon field strength tensor. The “kinematical” contribu-
tion can be expressed through the twist-2 quark GPDs H,
E and H̃, Ẽ [13–17].

In the case of polarized DIS the quark–gluon correction
is supposed to be small relative to the “kinematical” one.
This assumption is known as Wandzura–Wilczek approx-
imation [18]. The experimental data [19–21] point at its
reliability. It is assumed that the same approximation is
valid in the case of DVCS. The aim of this paper is to test
this hypothesis in the model of the instanton vacuum [22].

A method based on the model of the instanton vacuum
which allows one to calculate hadronic matrix elements of
the quark–gluon operators, was suggested [23]. In the case
of DIS it was shown [24,25] that the operators of twist-3 are
of order (ρ/R)4 ln(ρ/R), where ρ is the average size of the
instantons andR is the average distance between instantons
in the instanton medium. Thus, the matrix elements are
parametrically small due to the packing fraction ρ/R ∼
1/3. In this paper we apply this analysis to the non-diagonal
hadronic matrix elements of the quark–gluon operators in
the framework of DVCS. We show that in the model of
the instanton vacuum they are parametrically suppressed
by the packing fraction of the instanton vacuum. In the
forward limit we reproduce the results for the diagonal
case, that is, for polarized DIS.

2 “Genuine twist-3” effects

Let us consider the following vector and axial-vector bilo-
cal operators

Vα(x,−x) = ψ̄(x)γα[x,−x]ψ(−x) , (12)

Aα(x,−x) = ψ̄(x)γαγ5[x,−x]ψ(−x) . (13)

Here

[x, y] = P exp
{

ig
∫ 1

0
du (x− y)νAν(ux+ (1− u)y)

}
(14)

is the phase factor ordered along a straight line connecting
the points x and y. In what follows we will not write it
explicitly, assuming its presence in all non-local gauge-
invariant operators. In order to separate the “genuine twist-
3” contributions to the operators (12) and (13) from the
“kinematical” ones we shall use a technique elaborated
in [13–17]. According to the result obtained by Balitsky
and Braun [26,27] in the case of massless fermion operators
there are the following operator identities (ε0123 = +1):

ψ̄(x)γαψ(−x)
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=
∂

∂xα

∫ 1

0
du ψ̄(ux)x̂ψ(−ux)

−iεαβλσ

∫ 1

0
duuxβDλ

[
ψ̄(ux)γσγ5ψ(−ux)]

+
∫ 1

0
duGα(ux) , (15)

ψ̄(x)γαγ5ψ(−x)

=
∂

∂xα

∫ 1

0
du ψ̄(ux)x̂γ5ψ(−ux)

−iεαβλσ

∫ 1

0
duuxβDλ

[
ψ̄(ux)γσψ(−ux)]

+
∫ 1

0
duG5α(ux) , (16)

where

Gα(x) = g

∫ 1

−1
dv ψ̄(x) (17)

× [εαµντG
µρ(vx)xρx

νγτγ5 − ivGαρ(vx)xρx̂]ψ(−x) ,

G5α(x) = g

∫ 1

−1
dv ψ̄(x) (18)

× [εαµντG
µρ(vx)xρx

νγτγ5 − ivGαρ(vx)xρx̂] γ5ψ(−x) .

In these equations the derivative Dλ is defined for any
combination Γ of Dirac γ-matrices as

Dλ
{
ψ̄(x)Γ [x,−x]ψ(−x)} (19)

= lim
y→0

∂

∂yλ

{
ψ̄(x+ y)Γ [x+ y,−x+ y]ψ(−x+ y)

}
.

Later we will use the fact that the non-diagonal matrix
element of (19) is proportional to the momentum transfer:〈

P ′, S′ ∣∣Dλ
{
ψ̄(x)Γ [x,−x]ψ(−x)}∣∣P, S〉 (20)

= i(P ′ − P )λ
〈
P ′, S′ ∣∣ψ̄(x)Γ [x,−x]ψ(−x)∣∣P, S〉 .

If we took the fermion mass into account, there would
appear an additional mass term in the expression (16) for
the axial-vector bilocal operator

+ 2im
∫ 1

0
duu ψ̄(ux)iσαβx

βγ5ψ(−ux). (21)

Wewould now like to express the operators (12) and (13)
through the symmetrical ones:

Vsym(x,−x) = ψ̄(x)x̂[x,−x]ψ(−x) , (22)

Asym(x,−x) = ψ̄(x)x̂γ5[x,−x]ψ(−x) . (23)

These operators are “symmetrical” in the sense that on the
light cone (x2 = 0) they expand in series of symmetrical
traceless local operators. In order to do so we should solve

the system of ordinary differential equations (15) and (16)
with respect to Vα(x,−x) andAα(x,−x) (see the appendix
of [17] for details). The vector solution can be presented
in the following form:

Vα(x,−x) = VWW
α (x,−x) + V tw3

α (x,−x) , (24)

where

VWW
α (x,−x)

=
1
2

∫ 1

0
du

{
e(1−u)[(x·D)2−x2D2]1/2

+e−(1−u)[(x·D)2−x2D2]1/2
}

×
{[
xαD2 − (x ·D) Dα

]
×
∫ u

0
dv v ψ̄(vx)x̂[vx,−vx]ψ(−vx)

+
∂

∂xα

[
ψ̄(ux)x̂[ux,−ux]ψ(−ux)]

−iεαβλσx
β (25)

×Dλ ∂

∂xσ

∫ u

0
dv ψ̄(vx)x̂γ5[vx,−vx]ψ(−vx)

}
,

V tw3
α (x,−x)

=
1
2

∫ 1

0
du

{
e(1−u)[(x·D)2−x2D2]1/2

+e−(1−u)[(x·D)2−x2D2]1/2
}

×
{
− i

[
x2Dα − xα (x ·D)

]
×
∫ u

0
dv v

∫ v

−v

dt ψ̄(vx)[vx, tx]

×gGµν(tx)xµγν [tx,−vx]ψ(−vx)

+ Gα(ux)− iεαβλσx
βDλ

∫ u

0
dvGσ

5 (vx)
}
. (26)

Here VWW
α is the “kinematical” (or Wandzura–Wilczek)

contribution to the bilocal vector operator (12). The WW-
contribution for the spin- 1

2 target was discussed in detail
in [13, 16]. The second term V tw3

α in (24) is the “genuine
twist-3” (quark–gluon) contribution to the vector opera-
tor. In the case xα = −κnα (24)– (26) reproduce the result
of Belitsky and Müller [13]. It is of necessity to note that
the “genuine twist-3” contribution to the scalar product
xαVα(x,−x) vanishes, with the first term of the “kine-
matical” contribution only surviving. In the case when
xα = λnα/2 this means that the quark–gluon contribution
to the function nαFα vanishes, giving rise to the decom-
position (8).

The corresponding expressions for the axial-vector op-
erator (13) can be obtained by the following substitution
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in (24)–(26):

Γψ −→ Γγ5ψ ,

Gα ←→ G5α .

3 Diagonal nucleon matrix elements

Let us consider the polarized structure functions defined as
integrals over diagonal matrix elements of string operators
(for a review see [28,29] and references therein):

1
2M

+∞∫
−∞

dλ
2π

e−iλx

×
〈
P, S

∣∣∣∣ψ̄(λn2
)
γµγ5ψ

(
−λn

2

)∣∣∣∣P, S〉 (27)

= g1(x)(S · n)pµ + gT(x)S⊥µ + g3(x)M2(S · n)nµ ,

1
2M

+∞∫
−∞

dλ
2π

e−iλx

×
〈
P, S

∣∣∣∣ψ̄(λn2
)

iσµνγ5ψ

(
−λn

2

)∣∣∣∣P, S〉
= h1(x)

1
M

(S⊥µpν − S⊥νpµ)

+hL(x)M(S · n)(pµnν − pνnµ)

+h3(x)M(S⊥µnν − S⊥νnµ), (28)

where the spin 4-vector is normalized as S2 = −1. Taking
thematrix element of (16)with themass term (21)we arrive
at formulas known as Wandzura–Wilczek relations [18,30].
For the region 0 < x < 1 we have

S⊥α

{
gT(x)−

∫ 1

x

dy
y
g1(y)

− m
M

[
h1(x)
x
−
∫ 1

x

dy
y2 h1(y)

]}
(29)

=
1

2M

∫ 1

x

dy
y

+∞∫
−∞

dλ
2π

e−iλy

×
〈
P, S⊥

∣∣∣∣G5α

(
λn

2

)∣∣∣∣P, S⊥

〉
.

An analogous equation for the region −1 < x < 0 reads

S⊥α

{
gT(x) +

∫ x

−1

dy
y
g1(y)

− m

M

[
h1(x)
x

+
∫ x

−1

dy
y2 h1(y)

]}
(30)

= − 1
2M

∫ x

−1

dy
y

+∞∫
−∞

dλ
2π

e−iλy

×
〈
P, S⊥

∣∣∣∣G5α

(
λn

2

)∣∣∣∣P, S⊥

〉
.

It is easy to get the Wandzura–Wilczek relations for the
Mellin moments. For example, in the massless case they
have the form

S⊥α

∫ 1

−1
dxxm

[
gT(x)− 1

m+ 1
g1(x)

]
(31)

=
(−i)m

2M(m+ 1)
∂m

∂λm

〈
P, S⊥

∣∣∣∣G5α

(
λn

2

)∣∣∣∣P, S⊥

〉∣∣∣∣
λ=0

.

In particular, for m = 0 we have∫ 1

−1
dx [gT(x)− g1(x)] = 0; (32)

for m = 1 we get∫ 1

−1
dxx

[
gT(x)− 1

2
g1(x)

]
= 0; (33)

and for m = 2 we arrive at

S⊥α

∫ 1

−1
dxx2

[
gT(x)− 1

3
g1(x)

]
(34)

=
1

6M

〈
P, S⊥

∣∣∣g ψ̄ [G̃αβn
βn̂− nαG̃λβn

βγλ
]
ψ
∣∣∣P, S⊥

〉
.

The second term in (34) is purely longitudinal in α and
does not give any contribution; therefore the transverse
part of (34) takes the form

S⊥α

∫ 1

−1
dxx2

[
gT(x)− 1

3
g1(x)

]
(35)

=
1

6M

〈
P, S⊥

∣∣∣g ψ̄G̃αβn
βn̂ψ

∣∣∣P, S⊥
〉
, α = 1, 2.

The validity of (32)– (34) follows from the observa-
tion that G5(λn/2) ∼ λ2 and, consequently, the first non-
vanishing moment in (31) is the x2-moment. Equations (32)
and (33) are known as the Burkhardt–Cottingham [31] and
Efremov–Leader–Teryaev [32] sum rules, respectively. Us-
ing the definition of the constant d(2), which measures the
effect of genuine twist-3 contributions:∫ 1

−1
dxx2

[
gT(x)− 1

3
g1(x)

]
=

2
3
d(2), (36)

we come to the identity

Sα
⊥
〈
P, S⊥

∣∣∣g ψ̄G̃αβn
βn̂ψ

∣∣∣P, S⊥
〉

= −4Md(2), (37)

which illustrates that the constant d(2) characterizes the
correlations of quarks and gluons in a hadron.
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4 Non-diagonal nucleon matrix elements

In this section we would like to concentrate on the gluon
part V tw3

α (x,−x) of (24)– (26) with x = 1
2λn. The Fourier

transformation of its non-diagonal nucleon matrix element

F tw3
α (P ′, S′;P, S;x) (38)

=

+∞∫
−∞

dλ
2π

e−iλx

〈
P ′, S′

∣∣∣∣V tw3
α

(
λn

2
,−λn

2

)∣∣∣∣P, S〉

is the gluon part of the vector GPD, where the spin 4-
vectors are normalized as S2 = S′2 = −1. The Mellin
moments of F tw3

α are given by∫ 1

−1
dxxmF tw3

α (P ′, S′;P, S;x) (39)

= (−i)m ∂m

∂λm

〈
P ′, S′

∣∣∣∣V tw3
α

(
λn

2
,−λn

2

)∣∣∣∣P, S〉∣∣∣∣
λ=0

.

It is not difficult to predict the results of the calculation
of the first moments in (39). The G-term in (26) is propor-
tional to x2 (17) and, consequently, to λ2. The first and
the third terms in (26) are proportional to x3 and, conse-
quently, to λ3. This means that the x0- and x1-moments
should vanish; the G-term defines the x2-moment, with the
other terms of (26) giving their contributions to the highest
moments only. Thus one can get by direct calculation that∫ 1

−1
dxF tw3

α (x;P ′, S′;P, S)

=
∫ 1

−1
dxxF tw3

α (x;P ′, S′;P, S) = 0. (40)

These results mean that the first two moments of the GPDs
do not get gluon contributions, the WW approximation
turns out to be exact for them.

The first non-trivial Mellin moment sensitive to the
genuine twist-3 contributions is the x2-moment. It has the
following form:∫ 1

−1
dxx2F tw3

α (x;P ′, S′;P, S) (41)

=
1
3

〈
P ′, S′

∣∣∣g ψ̄ [G̃αβn
βn̂− nαG̃λβn

βγλ
]
γ5ψ

∣∣∣P, S〉 .
The transverse part of (41) has the form∫ 1

−1
dxx2F tw3

α (x;P ′, S′;P, S) (42)

=
1
3

〈
P ′, S′

∣∣∣g ψ̄G̃αβn
βn̂γ5ψ

∣∣∣P, S〉 , α = 1, 2.

The expressions for the axial moments can be obtained
using the substitution: Γψ −→ Γγ5ψ.

5 Estimate of the nucleon matrix elements

In order to estimate the magnitude of the second mo-
ments (35) and (42), we should analyze the non-diagonal
hadron matrix elements of the quark–gluon operators:

O⊥ = g ψ̄G̃⊥λn
λn̂ψ, (43)

O5⊥ = g ψ̄G̃⊥λn
λn̂γ5ψ (44)

(in this section we will use the notation: O⊥ ≡ Oα, α =
1, 2). For this purpose we first consider the non-diagonal
quark matrix elements of the operators (43) and (44). A
method for the calculation of such matrix elements in the
model of the instanton vacuum was suggested in [23,24]. It
was developed in the framework of the effective chiral theory
of the nucleon [33] (see also the recent reviews in [34, 35]
and the references therein). The essence of the method is
in the following.

In the model of the instanton vacuum [22] the fermion
partition function in the presence of N+ instantons and
N− anti-instantons can be represented as a functional in-
tegral over the fermion fields with a fermion effective action
Seff[ψ̄, ψ]:

Zfermions
N± = ZN±C

∫
Dψ̄Dψ exp

{
iSeff [ψ̄, ψ]

}
, (45)

where in the case of one quark flavor

Seff [ψ̄, ψ] =
∫

d4k

(2π)4
ψ̄(k)

[
k̂ −M(ik)

]
ψ(k), (46)

and ZN± is the variational partition function of the gluody-
namics. Equation (46) points out that a quark propagating
in the instanton medium acquires a dynamical momentum-
dependent mass M(ik). It is this mass that leads to the
non-vanishing value of the vacuum condensate 〈ψ̄ψ〉 and,
consequently, to the spontaneous chiral symmetry break-
ing in QCD [34]. The quark propagator in the instanton
vacuum model can be written in the momentum represen-
tation as

Ŝ(k) = i
k̂ +M(ik)

k2 −M2(ik) + iε
. (47)

The dynamical mass M(ik) has the form

M(ik) = M |F (ik)|2. (48)

Here the mass M ∼ ρ/R2 ∼ 345 MeV, where ρ is the
average size of the instantons in the instanton medium
and R is the average distance between instantons. The
instanton medium is characterized by its “packing fraction”
ρ/R with a phenomenological value ρ/R ∼ 1/3. Thus, the
productMρ ∼ ρ2/R2 is parametrically small. The function
F (k) in (48) is a form factor proportional to the Fourier
transformation of the wave function of the fermion zero-
mode:

F (k) = − t d
dt

[I0(t)K0(t)− I1(t)K1(t)] , t =
1
2
kρ,

F (k) = 1, ρ→ 0, (49)
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where In(t) are the modified Bessel functions and Kn(t)
are the modified Hankel functions.

The effective action (46) can be used in the calculation
of the quark matrix elements of the quark–gluon opera-
tors (43) and (44), the operators being replaced by the
effective ones:

〈p′, s′ |O| p, s〉inst.vac. = 〈p′, s′ |“O”| p, s〉eff . (50)

Here “O” is the fermion operator, which represents the
quark–gluon operator O in the effective fermion theory.
The explicit form of “O” was obtained in [23, 36]. The
effective action and effective operators being known, it is
possible to calculate the quark matrix elements of interest.

The direct calculation for the case of the operators (43)
and (44) results in the following expressions:

〈p′, s′ |“O⊥”| p, s〉eff =
1
2
Mρ2

∫
d4k

(2π)4
G(ik)

×ū(p′, s′)

×
[
F ∗(i(k − p))F (ip) n̂γ5Ŝ(k − p)Σ̂⊥(k, n)

−F ∗(ip′)F (i(k − p′)) Σ̂⊥(k, n)Ŝ(k − p′)n̂γ5

]
×u(p, s)

+(corrections), (51)

〈p′, s′ |“O5⊥”| p, s〉eff =
1
2
Mρ2

∫
d4k

(2π)4
G(ik)

×ū(p′, s′)

×
[
F ∗(i(k − p))F (ip) n̂Ŝ(k − p)Σ̂⊥(k, n)

−F ∗(ip′)F (i(k − p′)) Σ̂⊥(k, n)Ŝ(k − p′)n̂
]

×u(p, s)
+ (corrections). (52)

Here G(k) is the form factor proportional to the Fourier
transformation of the one-instanton dual field strength

G(k)

= 32π2
[(

1
2

+
4
t2

)
K0(t) +

(
2
t

+
8
t3

)
K1(t)− 8

t4

]
,

t = kρ, (53)

G(k) = −4π2, ρ→ 0, (54)

and the following definitions have been used:

Σ̂α(k, n) =
kαk

µ

k2 nνσµν +
kνkλ

k2 nλσαν − 1
2
nνσαν ,

σµν =
i
2

[γµ, γν ], nλ =
1

p̄+
√

2
(1; 0, 0,−1),

where u(p, s) is the quark Dirac bispinor.

Using the equations of motion, (51) and (52) can be
reduced to the form

〈p′, s′ |“O⊥”| p, s〉eff = MI(p) ū(p′, s′) n̂γ⊥γ5 u(p, s),

(55)

〈p′, s′ |“O5⊥”| p, s〉eff = −ξMI(p) ū(p′, s′) n̂γ⊥ u(p, s),

(56)

where ξ = − 1
2 (p′ − p) · n, and the integral I(p) is defined

in leading order of ρ2/R2 as

I(p) = ρ2 1
3

∫
d4k

(2π)4
G(k)F 3(k − p)

(k − p)2 +M2F 2(k − p)

×
[
−1 + 4

(k · p)2
k2p2

]
, (57)

where the integration is performed in Euclidean space with
p2 = −M2. In the case of diagonal matrix elements we
reproduce (up to a sign) the results of [24]:

〈p, s |“O⊥”| p, s〉eff = 4Md
(2)
quark s⊥, (58)

〈p, s |“O5⊥”| p, s〉eff = 0, (59)

where
d
(2)
quark =

1
2
I(p) (60)

is a quark constant analogous to the hadron constant (36)
in (37). Thus, the non-diagonal quark matrix elements (55)
and (56) of the twist-3 quark–gluon operators can be ex-
pressed through the quark constant:

〈p′, s′ |“O⊥”| p, s〉eff
= 2Md

(2)
quark ū(p

′, s′) n̂γ⊥γ5 u(p, s), (61)

〈p′, s′ |“O5⊥”| p, s〉eff
= −2ξMd

(2)
quark ū(p

′, s′) n̂γ⊥ u(p, s). (62)

In the limit of a small average size of instantons ρ we get
the following estimate of the integral I(p); see (57):

d
(2)
quark ∼ I(p) ∼ ρ2M2 ln ρ2M2, ρ� R. (63)

The quantity Mρ ∼ πρ2/R2 is a small parameter in the ef-
fective fermion theory and, thus, we notice that the quark
matrix elements of the quark–gluon operators are para-
metrically suppressed as a fourth power of the “packing
fraction” ρ/R of the instanton vacuum. The numerical
calculation [24] of I(p) gives d(2)

quark = 0.011 at the phe-
nomenological value Mρ = 0.58.

The non-zero value of d(2)
quark appears only at the order

∼ π2ρ4/R4. At the present stage of development of our
theory we cannot make precise predictions at this order,
as this would require one to go beyond the one-instanton
approximation. Therefore we consider the value of d(2)

quark =
0.011 only as an order of magnitude estimate. Using this
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order of magnitude estimate we can predict the order of
magnitude of d(2) for the nucleon [24]:

d(2) ∼ 10−3, (64)

with

d(2)
p − d(2)

n ∼ 1/Nc, d(2)
p + d(2)

n ∼ 1/N2
c .

Without the suppression due to the instanton packing frac-
tion a “natural” value of the nucleon d(2) would be of order
∼ ∫ 1

0 dx x2 g1(x) ∼ few × 10−2. A recent experiment at
SLAC [19] quotes the values d(2)

p = (3.2± 1.7) · 10−3 and
d
(2)
n = (7.9± 4.8) · 10−3 at Q2 ≈ 5 GeV2. These data hint

to a possible “anomalous suppression” of d(2) as predicted
in the model of the instanton vacuum [24].

Using the results (61) and (62) for the quark matrix
elements we can make a simple estimate of the correspond-
ing nucleon matrix element at ∆2 = 0. In such a kind of
estimate we assume that the nucleon matrix element at
∆2 = 0 has the same structure as in (61) and (62). Such
an assumption corresponds to the use of a simple quark
model to “translate” the quark matrix elements to the nu-
cleon ones. More sophisticated estimates can be done with
the help of the chiral quark-soliton model; see e.g. [24,37].
Note, however, that for the very fact of the suppression of
the twist-3 nucleon matrix elements the usage of the simple
quark model is sufficient. In the simple quark model of the
nucleon we arrive at

〈P ′, S′ |“O⊥”|P, S〉eff
= 2MNd

(2) N̄(P ′, S′) n̂γ⊥γ5N(P, S), (65)

〈P ′, S′ |“O5⊥”|P, S〉eff
= −2ξMNd

(2) N̄(P ′, S′) n̂γ⊥N(P, S), (66)

where N(P, S) is the nucleon Dirac bispinor. We come to
the conclusion that the hadron matrix elements of the “gen-
uine twist-3” (quark–gluon) operators are parametrically
suppressed in the effective chiral theory by the “packing
fraction” of the instanton vacuum.

6 GPDs decomposition

The quark twist-2 (WW) contributions to the nucleon GPD
F⊥ and F̃⊥ have been obtained in [13,16]. In this section
we would like to compare the WW contributions with the
genuine twist-3 ones, calculated in the previous section (to
be precise, we will compare their x2-moments). Follow-
ing [12] we present the “transverse” part of the GPDs in
the form1:

F⊥µ(x, ξ,∆) = N̄(P ′, S′)

×
{

(H + E) γ⊥
µ

1 We slightly changed the notation of [12] and added supple-
mentary functions which were missing in [12]; see also [38].

+G1
∆⊥

µ

2M
+G2 γ

⊥
µ +G3 ∆

⊥
µ n̂+G4 iε⊥

µν∆
ν
⊥n̂γ5

}
×N(P, S), (67)

F̃⊥µ(x, ξ,∆) = N̄(P ′, S′)

×
{
H̃ γ⊥

µ γ5 + Ẽ
∆⊥

µ

2M
γ5

+ G̃1
∆⊥

µ

2M
γ5 + G̃2 γ

⊥
µ γ5 + G̃3 ∆

⊥
µ n̂γ5 + G̃4 iε⊥

µν∆
ν
⊥n̂

}
×N(P, S). (68)

Note that in the above equations all functions dependonx, ξ
and∆2. The first three moments of the quark contributions
have the following structure.

The x0-moments are∫ 1

−1
dxF⊥µ(x, ξ,∆)

= N̄(P ′, S′){GM (∆2)
[
γ⊥

µ

]}N(P, S), (69)∫ 1

−1
dx F̃⊥µ(x, ξ,∆)

= N̄(P ′, S′)

{
GP (∆2)

[
∆⊥

µ

2M
γ5

]
+GA(∆2)

[
γ⊥

µ γ5
]}

×N(P, S). (70)

Here the well-known sum rules [11] have been used:∫ 1

−1
dxH(x, ξ,∆2) = F1(∆2),

∫ 1

−1
dxE(x, ξ,∆2) = F2(∆2),

∫ 1

−1
dx H̃(x, ξ,∆2) = GA(∆2),

∫ 1

−1
dx Ẽ(x, ξ,∆2) = GP (∆2), (71)

where F1(∆2) and F2(∆2) are the Dirac and Pauli form
factors, GP (∆2) and GA(∆2) are the pseudo-scalar and
axial-vector form factors, and, by definition, the magnetic
form factor is

GM (∆2) = F1(∆2) + F2(∆2). (72)

The results (69) and (70) imply that∫ 1

−1
dx Gi(x, ξ,∆) = 0,

∫ 1

−1
dx G̃i(x, ξ,∆) = 0.

These sum rules can be considered as a non-forward
generalization of the Burkhardt–Cottingham [31] sum
rules (32).
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For the x-moments of the vector GPD we get∫ 1

−1
dxxG1(x, ξ,∆) =

1
2
∂

∂ξ

∫ 1

−1
dxxE(x, ξ,∆),(73)

∫ 1

−1
dxxG2(x, ξ,∆)

=
1
2

[
GA(∆2)−

∫ 1

−1
dxx (H + E)(x, ξ,∆)

]
, (74)

∫ 1

−1
dxxG3(x, ξ,∆) = 0, (75)

∫ 1

−1
dxxG4(x, ξ,∆) = 0. (76)

Note that the x-moment of the GPD G2 does not vanish in
the forward limit and gives the quark orbital momentum
of the nucleon [12]:

lim
∆→0

∫ 1

−1
dxxG2(x, ξ,∆) = −Jq +

1
2
∆q = −Lq .

For the x-moments of the axial-vector GPD we have∫ 1

−1
dxx G̃1(x, ξ,∆)

=
1
2

[
F2(∆2) +

(
ξ
∂

∂ξ
− 1

)∫ 1

−1
dxx Ẽ(x, ξ,∆)

]
, (77)

∫ 1

−1
dxx G̃2(x, ξ,∆) (78)

=
1
2

[
ξ2GE(∆2)− ∆2

4M2 F2(∆2)−
∫ 1

−1
dxx H̃(x, ξ,∆)

]
,

∫ 1

−1
dxx G̃3(x, ξ,∆) =

1
4
ξ GE(∆2), (79)

∫ 1

−1
dxx G̃4(x, ξ,∆) =

1
4
GE(∆2), (80)

where

GE(∆2) = F1(∆2) +
∆2

4M2 F2(∆2) (81)

is the electric form factor. These moments have no gluon
contribution due to (40) and they have already been dis-
cussed in [12, 16]. Similarly to the previous case one can
consider the relations (73)– (76) and (77)– (80) as a non-
forward generalization of theEfremov–Leader–Teryaev [32]
sum rule (33).

We are passing now to a consideration of the x2-mo-
ments. For these moments the “genuine twist-3” (quark–
gluon) contribution (42) does not vanish and one can de-
compose the GPDs G and G̃ from (67) and (68) into the
WW and genuine twist-3 parts:

G
(2)
i (ξ,∆) = G

(2)WW
i (ξ,∆) +G

(2)tw3
i (ξ,∆), i = 1, 2, 3, 4.

(82)

For the x2-moments of the vector GPD “kinematical” part
we get∫ 1

−1
dxx2GWW

1 (x, ξ,∆)

=
(
− 1

3

)[
ξF2(∆2) + ξ

(
ξ
∂

∂ξ
− 1

)
Ẽ(1)(ξ,∆)

− ∂

∂ξ
E(2)(ξ,∆)

]
, (83)

∫ 1

−1
dxx2GWW

2 (x, ξ,∆)

=
1
3

[
ξ2GM (∆2) +

∆2
⊥

4M2

(
ξ
∂

∂ξ
− 1

)
Ẽ(1)(ξ,∆)

+H̃(1)(ξ,∆)− 2(H + E)(2)(ξ,∆)
]
, (84)

∫ 1

−1
dxx2GWW

3 (x, ξ,∆)

=
1
6

[
ξGM (∆2) +

(
1− ∆2

4M2

)
ξ

(
ξ
∂

∂ξ
− 1

)
Ẽ(1)(ξ,∆)

− ∂

∂ξ
(H + E)(2) (ξ,∆)

]
, (85)

∫ 1

−1
dxx2GWW

4 (x, ξ,∆) (86)

=
(
− 1

6

)(
ξ
∂

∂ξ
− 1

)[
H̃(1)(ξ,∆) +

∆2

4M2 Ẽ
(1)(ξ,∆)

]
,

where we used shorthand notation for the Mellin moments
of the twist-2 vector GPDs:

H(m)(ξ,∆) =
∫ 1

−1
dxxmH(x, ξ,∆),

E(m)(ξ,∆) =
∫ 1

−1
dxxmE(x, ξ,∆);

and analogous notation for the twist-2 pseudo-vector GPDs
H̃ and Ẽ.

For the x2-moments of the axial-vector GPD we get∫ 1

−1
dxx2 G̃WW

1 (x, ξ,∆)

=
(
− 1

3

)(
ξ
∂

∂ξ
− 2

)[
E(1)(ξ,∆)− Ẽ(2)(ξ,∆)

]
, (87)

∫ 1

−1
dxx2 G̃WW

2 (x, ξ,∆)

=
1
3

[
ξ2
(
GA(∆2) + (H + E)(1) (ξ,∆)

)
(88)

+
∆2

⊥
4M2

(
ξ
∂

∂ξ
− 2

)
E(1)(ξ,∆)− 2H̃(2)(ξ,∆)

]
,
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∫ 1

−1
dxx2 G̃WW

3 (x, ξ,∆)

=
1
6

[
ξ
(
GA(∆2) + (H + E)(1)(ξ,∆)

)
+
(

1− ∆2

4M2

)
ξ

(
ξ
∂

∂ξ
− 2

)
E(1)(ξ,∆)

− ∂

∂ξ
H̃(2)(ξ,∆)

]
, (89)

∫ 1

−1
dxx2 G̃WW

4 (x, ξ,∆) (90)

=
(
− 1

6

)(
ξ
∂

∂ξ
− 2

)[
H(1)(ξ,∆) +

∆2

4M2E
(1)(ξ,∆)

]
.

Let us consider the quark–gluon contributions to the
moments of F⊥ and F̃⊥. We have already shown that their
x0- and x1-moments vanish (40), with the x2-moment being
given by (42) in the vector case. Substituting (65) into (42)
and decomposing the result according to (67) we get the
following expressions for the x2-moments of the genuine
twist-3 vector GPD at ∆2 = 0:∫ 1

−1
dxx2Gtw3

1 (x, ξ) = 0, (91)

∫ 1

−1
dxx2Gtw3

2 (x, ξ) = − 2
3

(1− ξ2) d(2), (92)

∫ 1

−1
dxx2Gtw3

3 (x, ξ) =
1
3
ξ d(2), (93)

∫ 1

−1
dxx2Gtw3

4 (x, ξ) =
1
3
d(2). (94)

Here d(2) is given by (36). For the axial-vector GPD we
get at ∆2 = 0∫ 1

−1
dxx2 G̃tw3

1 (x, ξ) = 0, (95)

∫ 1

−1
dxx2 G̃tw3

2 (x, ξ) =
2
3

(1− ξ2) d(2), (96)

∫ 1

−1
dxx2 G̃tw3

3 (x, ξ) = − 1
3
ξ d(2), (97)

∫ 1

−1
dxx2 G̃tw3

4 (x, ξ) = − 1
3
d(2). (98)

The expressions (91)– (94) and (95)– (98) for the gen-
uine twist-3 contributions should be compared to the ex-
pressions (83)– (86) and (87)– (90) of the WW part for
the quark contributions, respectively. As we saw above, in
the instanton vacuum the constant d(2) is strongly sup-
pressed by the packing fraction of instantons [24]. Here we
expressed the x2-moments of the genuine twist-3 GPDs in
terms of the constant d(2); see (91)– (94) and (95)– (98).

We conclude that the twist-3 vector and axial-vector GPDs
are parametrically suppressed relative to the WW ones due
to the packing fraction of the instanton vacuum:

G
(2)tw3
i

G
(2)WW
i

∼ π2
(
ρ2

R2

)2

ln
(
ρ2

R2

)
� 1. (99)

This indicates that in the QCD vacuum the “genuine twist-
3” (quark–gluon) contributions turn out to be small relative
to the purely quark ones.
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